
doi: 10.1098/rsta.1998.0160
, 249-259356 1998 Phil. Trans. R. Soc. Lond. A

 
D. E. Logan and P. NoziÈres
 
The Mott transition
 

Email alerting service
 herecorner of the article or click 

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand

 http://rsta.royalsocietypublishing.org/subscriptions go to: Phil. Trans. R. Soc. Lond. ATo subscribe to 

This journal is © 1998 The Royal Society

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;356/1735/249&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/356/1735/249.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/


The Mott transition
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Current understanding of the Mott transition in the infinite-dimensional Hubbard
model is reviewed. It is argued that the problem remains open, but is likely to hinge
on a proper understanding of the role of exhaustion.
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1. Introduction

Of the various possible metal–insulator transitions, one of the most persistent and
challenging is that driven by electron interactions: the Mott transition (Mott 1990),
named after the great pioneer who devoted nearly half a century to its understanding
and implications.

From a theoretical viewpoint, the problem is captured at nominally its simplest
level by the one-band Hubbard model in the half-filled sector of one electron per site.
The Hubbard model itself has been studied extensively in the 35 or so years since
its formal inception (Hubbard 1963; Gutzwiller 1963; Kanamori 1963), but, save for
the d = 1 dimensional limit, a thorough understanding of it is still lacking.

In recent years, however, considerable progress has occurred in understanding the
Hubbard model in the opposite extreme: of large spatial dimensions, strictly the
infinite-d limit, the importance of which was first pointed out only eight years ago
by Metzner & Vollhardt (1989). Intense study of the infinite-d Hubbard model, in
particular at half-filling on bipartite lattices, has since ensued (detailed reviews are
given, for example, in Vollhardt 1993; Georges et al. 1996; Pruschke et al. 1995; Geb-
hard 1997). In suppressing spatial fluctuations, the intrinsically many-body problem
simplifies considerably in infinite d, reducing in effect to a dynamical single-site mean-
field theory, and mapping exactly onto an effective self-consistent single impurity
Anderson model. The motivation for studying this limit resides in the expectation—
or at least the hope—that an understanding of it will serve as a starting point for
the investigation of finite dimensions; together with the knowledge that at least some
important vestiges of finite-d behaviour remain inherent in the infinite-d limit.

One highlight of this many-faceted work has been the emergence of detailed pre-
dictions for the Mott transition by Kotliar et al. (1996), whose iterated perturbation
theory (IPT) approach (Georges & Kotliar 1992; Zhang et al. 1993; Rozenberg et al.
1994a; Georges & Krauth 1993), in particular, provides perhaps the most compre-
hensive and self-contained description.

In this paper we argue that the resultant scenario for the Mott transition is con-
troversial. In §2, we begin with a brief summary of the qualitative results arising
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Figure 1. Coexistence of metallic and insulating solutions for Uc1 < U < Uc2, as arises within
IPT (for which (Uc2 − Uc1) ∼ D).

from IPT, before asking whether the picture emerging from it is convincingly cor-
roborated by other approaches. Simple physical arguments are then developed that
lead to two quite distinct scenarios for the Mott transition. One of these is just the
picture emerging from IPT, and suggests a physical explanation for it; the other
leads to a more conventional scenario for the transition as a single zero-temperature
quantum critical point. The two scenarios are discriminated by whether or not the
exhaustion problem of Nozières (1985) is relevant, and a further understanding of
which is, we believe, crucial to the Mott transition. At present, however, we conclude
that a qualitative understanding of the transition remains elusive.

2. Review

We first review briefly the salient qualitative features of the iterated perturbation
theory approach of Kotliar and co-workers (details are given in the original papers
(Georges & Kotliar 1992; Zhang et al. 1993; Rozenberg et al. 1994a; Georges &
Krauth 1993), and the review (Georges et al. 1996)). The approach itself is directly
analogous to second-order perturbation theory in the interaction strength U , much
studied in the context of the single-impurity Anderson model itself (see, for example,
Hewson 1993). The key difference, of course, is that when applied to the Hubbard
model the problem must of necessity be solved self-consistently: hence iterated per-
turbation theory.

The essential feature of IPT is that, at zero temperature in particular, two
solutions—one metallic, and one insulating—are found to coexist over a finite range
of the interaction strength, as illustrated schematically in figure 1. To be specific,
and starting from the non-interacting limit U = 0, a metallic Fermi-liquid solution
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Figure 2. Schematic illustration of typical single-particle spectra for (a) metallic phase close to
Uc2 and (b) insulating phase.

is found to exist up to (but no further than) a critical interaction strength, Uc2. A
typical single-particle spectrum for the metallic phase close to Uc2 is sketched in fig-
ure 2a (from particle-hole symmetry it is symmetric about the Fermi level µ = 1

2U).
It consists of upper and lower Mott–Hubbard bands, together with the important
Kondo-like many-body resonance centred on the Fermi level, with its characteristsic
low-energy Kondo scale, ωK; and as the critical interaction strength Uc2 is approached
from below, the quasi-particle weight Z ∝ ωK vanishes continuously, as illustrated
in figure 1. Alternatively, starting instead from the large-U regime of the Mott insu-
lator where the spectrum consists solely of lower and upper Mott–Hubbard bands
separated by the insulating gap ∆g (see figure 2b), an insulating solution is found
to persist down to a critical interaction strength Uc1 < Uc2, below which insulating
solutions no longer occur.

For Uc1 < U < Uc2, metallic and insulating solutions thus coexist. The magnitude
(Uc2 − Uc1) of the coexistence interval is rather large, on the order of the non-
interacting bandwidth, D (for the d∞ Bethe lattice, Uc2 ∼ 3.4D and Uc1 ∼ 2.6D
(Georges et al. 1996)). Further, and importantly, the metallic solution is found to have
a lower energy than the insulator in the coexistence interval and is thus the ground
state. The Mott transition itself thus occurs at the critical interaction strength Uc2.

At finite temperatures an analogous situation is found to occur (Georges et al.
1996), as schematized in figure 3: for any T < T2, a metallic-like solution exists for
U < Uc2(T ), while an insulating solution exists for U > Uc1(T ) with Uc1(T ) 6 Uc2(T )
for all T 6 T2. Coexistence of the two types of solution thus again occurs, and a
conventional free-energy construction leads to the actual first-order transition line
shown in figure 3 as Uc(T ). The IPT phase diagram thus consists of a line of first-
order metal–insulator transitions terminating in a second-order critical point at T2—
analogously to a liquid–gas transition, such that below the critical temperature there
is a first-order transition between the two phases, while a continuous transition from
one to the other is possible by circumventing the critical point.

Strictly speaking, of course, the above considerations are irrelevant to the true
ground state of the half-filled Hubbard model, where for all U > 0 the local moments
order antiferromagnetically and the ground state is an antiferromagnetic insulator.
Magnetic long-ranged order is destroyed thermally at the Néel temperature TN(U);
since TN > T2, it swamps, so to speak, the MIT. Thus, as studied extensively by
Jarrell & Pruschke (Jarrell 1992; Jarrell & Pruschke 1993) in particular—via quan-
tum Monte Carlo—the true ground state phase diagram consists, as illustrated in
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Figure 3. Schematic IPT phase diagram with the line of first-order metal–insulator transitions
denoted by Uc(T ); the lines Uc1(T ) and Uc2(T ) are shown dotted and dashed, respectively.
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Figure 4. Schematic of (a) true ground state phase diagram; (b) phase diagram with partial
frustration: AFI: antiferromagnetic insulator; PI: paramagnetic insulator; PM: paramagnetic
metal.

figure 4a, of an antiferromagnetic insulating phase for T < TN. Above the Néel tem-
perature, at moderate to large interaction strengths, occurs a thermal paramagnetic
insulating phase—with local moments but no long-ranged order thereof—while at
lower U , a paramagnetic metallic phase occurs. When U is varied, the transition
between the paramagnetic metallic and insulating-like phases is smooth.

Magnetic ordering can, however, be frustrated, via, for example, the introduction
of random nearest and next-nearest neighbour hopping (Georges et al. 1996) which,
in frustrating simply the ordering of the local moments, suppresses the Néel temper-
ature and thus ‘exposes’ the line of first-order metal–insulator transitions (as shown
schematically in figure 4b). The resultant phase diagram is, in fact, strikingly similar
to that for V2O3 under pressure, containing as it does a paramagnetic insulator sep-
arated from a paramagnetic metal by a line of first-order transitions terminating in
a second-order critical point. Of course, an infinite-dimensional one-band model that
contains no coupling to lattice degrees of freedom does scant justice to the chemical
complexities of transition metal oxides. But the qualitative similarity between the
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phase diagrams has engendered the belief that, with extension to include, for exam-
ple, orbital degeneracy, realistic connection to real materials can be made; and much
work in this direction has ensued (see, for example, Georges et al. 1996).

Finally, in the limit of full frustration, magnetic ordering is entirely suppressed,
and the phase diagram of figure 3 is again recovered. It is appropriate either to the
fully frustrated Hubbard model or, equivalently, to the entirely unfrustrated case
when AFLRO is ignored.

(a ) Critique
The first-order transition described above stems directly from the existence of two

characteristic energies in the vicinity of Uc2, namely the width ωK of the Kondo
resonance and the Mott gap ∆g. The latter is finite when ωK goes to zero at the
transition: the Kondo resonance vanishes in the middle of a large preformed gap
(figure 2a). The metallic and insulating states are thus well separated. At T = 0, the
metallic state is always lower in energy when it exists, but at any finite temperature
the insulating state is a local minimum due to the spin entropy of a disordered
paramagnetic phase. As a result, both phases are locally stable and a first-order
transition ensues. This contrasts sharply with a simple band crossing picture in
which free carriers would disappear when the gap opens, resulting in a single zero-
temperature quantum critical point.

The presence of a preformed gap being crucial, we must carefully assess the evi-
dence for it. That evidence is based on several different aproaches. The simplest
method is IPT, which is supposed to interpolate between weak and strong coupling.
Appealing though it is, IPT is not entirely uncontroversial and has been challenged in
particular by Macarie & d’Ambrumenil (1995). In any event, it is an approximation—
as of necessity is any essentially analytical approach—and one probably best suited
to describe the metallic phase: its originators point out (Georges et al. 1996) that
it is unlikely to give a sound description of the collapse of the Mott insulator as U
tends to Uc1; and it is known to be largely unable to describe the antiferromagnet-
ic phase, missing as it does essential low-energy spin-flip scales there (Logan et al.
1996). Clearly, as is well appreciated, one should not rely on IPT alone.

What then of Quantum Monte Carlo (QMC) simulations? QMC is exact in princi-
ple, and although unable in practice to access the T = 0 limit of particular interest,
one should be able to glean firm evidence for coexisting metallic and insulating-
like solutions by QMC studies at accessible finite temperatures below the putative
second-order critical temperature T2. Rozenberg, Kotliar and Zhang (Zhang et al.
1993; Rozenberg et al. 1994a) have indeed reported such QMC evidence, consistent
with the predictions of IPT. What was actually found (Rozenberg 1996, personal
communication), however, was an oscillation between two apparent solutions—one
metallic-like, the other insulating-like—and each of which was then assumed to be
a stable QMC solution. Such behaviour was also observed by Pruschke (1995, and
personal communication), but was found to be a numerical artifact that disappeared
upon improving the simulation code, whereupon one or other but not both of the
metallic and insulating-like solutions was truly stabilized. QMC studies to date are
thus not mutually consistent and do not as yet appear to resolve the matter.

A similar situation arises with so-called exact diagonalization methods (Caffarel &
Krauth 1994; Rozenberg et al. 1994b) whereby, exploiting the analogy of the d∞ Hub-
bard model to a self-consistent single impurity Anderson model, the self-consistent
‘bath’ to which a nominal ‘impurity’ site is coupled is modelled by a finite number
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ns of orbitals, with ns . 10 typically. Further approximations are required, involv-
ing judicious choices both of bath parametrization and means of approximating the
self-consistency equations. According to the specific approximations chosen, differing
conclusions arise regarding the question of coexistence between metallic and insu-
lating solutions (Caffarel & Krauth 1994; Rozenberg et al. 1994b); although it is
doubtful whether the low energy scales of such dominance in the problem can in
practice ever be satisfactorily resolved by such methods.

Other approaches likewise yield conflicting perspectives. The non-crossing approx-
imation—with well-understood limitations, being confined to finite T and unable to
describe properly Fermi liquid behaviour as T → 0—does not appear to provide cor-
roborating evidence at finite temperature for coexistence of metallic and insulating-
like solutions (Pruschke et al. 1993). In contrast, the self-consistent projective method
(Moeller et al. 1995) supports the basic picture arising from IPT—with the a pri-
ori assumption of well-separated energy scales. We will argue below that such an
assumption raises problems. The resulting picture is, however, very transparent and
sheds much light on the underlying mechanisms: we therefore examine it in more
detail. The idea is to focus on the low energy states near the Fermi level, in much
the same way as one goes from an Anderson model to a Kondo Hamiltonian, elimi-
nating charge fluctuations of the impurity via a Schrieffer–Wolf transformation (see,
for example, Hewson 1993). Here, the starting point is a self-consistent Anderson
‘impurity’ model in which a given site with interaction U is hybridized to a fictitious
continuum that accounts for excursions into the outside world. That ‘bath’ is calcu-
lated self-consistently. Compared to a usual Anderson impurity, the novelty resides
in the separation of the bath into a narrow resonance near the Fermi level, and two
broad Mott sidebands. Projecting onto low-energy states means in effect eliminating
both the n0 = 0, 2 states of the central site and the Mott sidebands of the spectrum.
The algebra is more involved, but the final result within second-order perturbation
theory is unmodified: a spin-1

2 Kondo ‘impurity’ is coupled to a narrow fermion band
of width ωK ∼ ZD, containing NZ states altogether (D is the original bandwidth, to
which all energies are referred). That coupling has both scalar and exchange terms.
The scalar coupling is zero for the electron-hole symmetric case (otherwise it proba-
bly fixes the position of the resonance inside the gap). The exchange coupling yields
a Kondo temperature TK, which is found to be of order ωK (the effective bandwidth).
The exchange coupling is thus intermediate, as befits the universal regime expected
when ωK is much smaller than any other energy scale in the problem. The physics
of free carriers is ultimately reduced to a Kondo problem: the magnetic entropy
N log 2 of the paramagnetic Mott sidebands is quenched by exchange with free car-
riers lying in the central resonance, resulting in a steep specific heat Cv(T ). Such
‘heavy fermion’ behaviour is common to all theories, including the most naive ones
such as the Gutzwiller approximation.

Such a picture offers a very appealing interpretation of the first-order Mott tran-
sition, as shown in Moeller et al. (1995). Assume we start from an insulating state
with gap ∆g; we then transfer NZ states from the Mott sidebands to a resonance
near the Fermi level. We clearly pay a cost in kinetic energy:

Ec ∼ NZ∆g, (2.1)

but these ‘freed’ electrons are eligible to produce a Kondo effect: at T = 0, the ground
state energy will be lowered due to the occurrence of singlet screening. Let Eg be
that energy gain. If Eg > Ec, the balance is favourable, and free carriers appear

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


The Mott transition 255

METAL
Uc U

Z ~ ωk /D 
∆g

INSULATOR

Figure 5. Situation arising if exhaustion is salient: the Mott transition as a single
zero-temperature quantum critical point.

spontaneously. If Eg < Ec, the system remains insulating. Note further the presence
of a built in saturation mechanism: if Z grows, the central states repel the Mott
sidebands, the gap ∆g thereby increases and the balance ceases to be favourable.
As noticed in Moeller et al. (1995), a simple ‘Landau theory’ ensues, very similar
to that found in the Gutzwiller approach. Even more interesting is the temperature
dependence: when T exceeds TK, the gain in exchange energy disappears, parallel
and antiparallel spin configurations being equally populated in contrast to the singlet
ground state. Only the cost in kinetic energy remains: the resonance disappears
instead of broadening, the weight Z vanishing without noticeable change in width.
The whole physical picture is thus clear: what is needed is an estimate of the Kondo
energy Eg.

3. The problem of exhaustion

While for a single Kondo impurity, Eg is roughly the Kondo temperature ∼ ZD,
a difficulty arises for the whole system: one is attempting to screen a large number
of spins, N , with a small number of electrons in the central resonance, NZ. Clearly
screening cannot be an individual process in which each spin traps a partner: hence
the ‘exhaustion problem’ raised long ago (Nozières 1985). Collective singlet formation
is a definite possibility: each electron visits in sequence many impurities and magnetic
entropy is quenched when precession has averaged all spin orientations. It is very
likely that direct RKKY coupling between spins also plays an important role. Granted
that the issue remains unclear: the relevant energy scales for quenching the spin
entropy, as well as the position of the Fermi surface, are matters of debate. But we
shall reduce the controversy to a single question: does one gain the Kondo energy
ωK once per spin, or once per electron in the resonance? The picture of an electron
visiting spins in succession would imply the latter choice. We leave this question
open, and confine ourselves to the corresponding scenarios for the Mott transition.

Scenario 1. The Kondo energy is gained once for each spin in the sidebands, i.e.
Eg = NωK ∼ NZD. It follows trivially that the energy balance becomes favourable
when ∆g ∼ D: the Kondo resonance thus appears in the middle of a large preformed
gap of order D, and the picture of IPT ensues.

Scenario 2. The Kondo energy is gained once for each electron in the resonance,
i.e. Eg = NZωK ∼ NZ2D. Then the balance becomes favourable when the gap ∆g
is of order ZD ∼ ωK. In such a case there is no preformed gap, the Mott transition
being governed solely by a single energy scale: as shown in in figure 5, the resonance
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width and insulating gap are slaved to each other in the critical regime, and each
vanishes at the transition. In other words, the Mott transition in this case is a single
zero-temperature quantum critical point, as referred to in §2.

The arguments sketched above lead then to two physically very distinct scenarios
for the T = 0 Mott transition. On the one hand, if the screening physics is in
essence that of independent Kondo impurities, one has a two energy-scale transition
accompanied by a pre-formed spectral gap, as indeed arises tangibly within IPT; on
the other, if exhaustion is salient, one has instead a Mott transition characterized
by a single energy scale. In consequence, the finite temperature behaviours likewise
differ radically, with first-order transitions arising in the former case, but smooth
crossovers only in the latter.

Of course, the simple physical arguments given above do not by themselves tell us
which of the two scenarios is correct, although we do not understand how exhaustion
could be avoided. But we certainly believe the issue is crucial in understanding the
Mott transition: at minimum, if exhaustion is to be circumvented—as in the scenario
arising from IPT—we need to understand how; and, if so, whether it is a feature
peculiar to the infinite-dimensional limit.

In summary, and despite considerable progress in recent years, our contention
is that even a qualitative understanding of the Mott transition still eludes us: we
have tried to reduce it to a simple physical question—which should receive a simple
physical answer.

References
Caffarel, M. & Krauth, W. 1994 Phys. Rev. Lett. 72, 1545.
Gebhard, F. 1997 The Mott metal–insulator transition. Berlin: Springer.
Georges, A. & Kotliar, G. 1992 Phys. Rev. B 45, 6479.
Georges, A. & Krauth, W. 1993 Phys. Rev. 48, 7167.
Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. 1996 Rev. Mod. Phys. 68, 13.
Gutzwiller, M. C. 1963 Phys. Rev. Lett. 10, 59.
Hewson, A. 1993 The Kondo problem to heavy fermions. Cambridge University Press.
Hubbard, J. 1963 Proc. R. Soc. Lond. A 276, 238.
Jarrell, M. 1992 Phys. Rev. Lett. 69, 168.
Jarrell, M. & Pruschke, T. 1993 Z. Phys. B 90, 187.
Kanamori, J. 1963 Prog. Theor. Phys. 30, 275.
Logan, D. E., Eastwood, M. P. & Tusch, M. A. 1996 Phys. Rev. Lett. 76, 4785.
Macarie, L. S. & d’Ambrumenil, N. 1995 J. Phys. Cond. Matt. 7, 3237.
Metzner, W. & Vollhardt, D. 1989 Phys. Rev. Lett. 62, 324.
Moeller, G., Si, Q., Kotliar, G., Rozenberg, M. J. & Fisher, D. S. 1995 Phys. Rev. Lett. 74, 2082.
Mott, N. F. 1990 Metal–insulator transitions. London: Taylor and Francis.
Nozières, P. 1985 A. Phys. 10, 19.
Pruschke, T. 1995 Habilitation thesis, University of Regensburg.
Pruschke, T., Cox, D. L. & Jarrell, M. 1993 Phys. Rev. B 47, 3553.
Pruschke, T., Jarrell, M. & Freericks, M. 1995 Adv. Phys. 44, 187.
Rozenberg, M. J., Kotliar, G. & Zhang, X. Y. 1994a Phys. Rev. B 49, 10 181.
Rozenberg, M. J., Moeller, G. & Kotliar, G. 1994b Mod. Phys. Lett. 8, 535.
Vollhardt, D. 1993 In Correlated electron systems (ed. V. J. Emery). Singapore: World Scientific.
Zhang, X. Y., Rozenberg, M. J. & Kotliar, G. 1993 Phys. Rev. Lett. 70, 1666.

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


The Mott transition 257

Discussion

G. Kotliar (Serin Physics Laboratory, Rutgers University, NJ, USA). The phase
diagram of the Hubbard model is strongly dependent on the nature of the lattice,
which determines the type of magnetic order. Mott emphasized that the metal–
insulator transition is an issue somewhat separate from the issue of magnetic order.
The phase diagram of the one-band Hubbard model on the square lattice (which is
not frustrated) is not, in my opinion, relevant to the metal–insulator transistion in
systems such as the titanates or vanadium oxide. To describe these systems we need
models where the magnetic order is suppressed. Within a one-band model, magnetism
can only be suppressed by introducing additional hopping matrix elements in the
kinetic energy. To my knowledge, this observation in the context of dynamical mean-
field theory was made independently by Rozenberg et al. (1992) and Georges &
Krauth (1993). The role of magnetic order in the phase diagram was discussed even
earlier in Georges et al. (1992), where the dynamical mean-field equations in the
presence of magnetically broken symmetry were first derived. The first numerical
determination of the phase diagram in the (unfrustated) square lattice was first
carried out by Jarrell (1992). The phase diagram in the unfrustrated Bethe lattice
was obtained in Rozenberg et al. (1994) and Ulmke et al. (1995).

Titanates have a perovskite structure (simple cubic lattice) which is not frustrated,
while V2O3 has a corundum structure which is not frustrated either. The source of
frustration in realistic oxides has to be found in their orbital degenerancy rather
than their lattice structure. This important observation due to Castellani et al. and
Khomski is essential for the understanding of V2O3 (Rice 1995). The role of orbital
degeneracy in the context of the dynamical mean-field equations, and the extent
to which it justifies the use of the paramagnetic solution, was recently discussed in
Rozenberg (1996), Kotliar & Kajueter (1996) and Kajeuter & Kotliar (1997), where
more realistic calculations were carried out.

I am pleased to hear that our work on the nature of the Mott transition in the
frustrated Bethe lattice is interesting. I must disagree, however, with Dr Logan’s
statement that our conclusions (as to the topology of the phase diagram of the ful-
ly frustrated Hubbard model) are solely based on iterated perturbation theory. I
should mention the exact diagonalization studies using exact diagonalization tech-
niques (Rozenberg et al. 1994) which lead to the same qualitative picture (and to
more accurate values for Uc1 and Uc2). Furthermore, the development of the more
accurate projective self-consistent method, allowed a precise determination of the
critical behaviour near the Mott transition and provided a rigorous proof that the
qualitative scenario obtained within IPT is a genuine property of the Hubbard model
in the limit of infinite dimensions (Moeller et al. 1995; Fisher et al. 1995).

Dr Logan stated in his talk that Monte Carlo calculations and other approximate
calculations by Prushke and his group reached the opposite conclusion, i.e. only one
critical U at zero temperature and no coexistence at finite temperature. It is impor-
tant to settle this issue. The differences concerning the finite temperature transition
could be clarified by a careful comparison of the results produced by different com-
puter codes (a Monte Carlo code would lead to finite temperature coexistence written
by Krauth is available in the internet address described in our review (Georges et
al. 1996)). I suggest to study with the methods in question the orbitally degener-
ate model. Analytic, as well as numeric, calculations (Rozenberg 1996; Kotliar &
Kajeuter 1996; Kajeuter & Kotliar 1997) indicate that the difference between Uc1
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and Uc2 is amplified by higher occupation and higher orbital degeneracy. This will
facilitate the numerical study.

Finally, I would like to point out that while I am completely certain that we
obtained the correct solution of the Hubbard model in the limit of infinite lattice
coordination, it is by no means clear that the results describe nature quantitatively
very close to the transition. This is, in my view, the real challenge for the future.
There are several reasons to suspect that in finite dimensions a closing of a gap will
occur at the same time that the central resonances appear: (i) this is the scenario
predicted by a finite d large N calculation (Castellani et al. 1992); (ii) there are
no clear indications that the 1/d corrections near the Mott transition are singular
perturbations (Georges, work in progress); (iii) gap closing is the scenario suggested
by slave bosons calculations (Castellani et al. 1992).

I am optimistic that in our next meeting we will have a much better handle on
if (and how) finite dimensionality corrections modify the large d predictions. By
then, some realistic dynamical mean-field calculations will have been performed and
compared with three-dimensional compounds. Then we will be able to assess how
well we understand the classic problem formulated by Sir Nevill Mott.

F. Gebhard (Institut Laue-Langevin, Grenoble, France). In reply to Professor
Kotliar’s comments, the projective self-consistent method uses the assumption that
the high and low energy scales can be separated completely in the vicinity of the
Mott–Hubbard metal–insulator transition in the infinite-dimensional Hubbard mod-
el. At best, the method allows one to prove that this assumption is self-consistently
fulfilled. If this assumption was true, the Mott–Hubbard transition would be dis-
continuous because the Mott–Hubbard gap would jump to its finite pre-formed val-
ue when the matallic state ceases to exist. However, I doubt that the prerequisite
of energy-scale separation is indeed fulfilled. Hence, there is no evidence against
the (more likely) scenario of the Mott–Hubbard transition as a continuous zero-
temperature quantum phase transition where the quasi-particle weight in the metal-
lic Fermi liquid vanishes at the same critical interaction strength where the Mott–
Hubbard gap opens.

D. E. Logan. I have three brief comments to make in reply to Professor Kotliar.
(i) The distinction between frustrated and unfrustrated lattices is, of course, essen-

tial to real finite-dimensional systems, but is rather a red herring in the infinite-
dimensional limit under discussion. Here, as we know, the phase diagram of the
half-filled Hubbard model on the fully frustrated Bethe lattice is identical to that
arising for the unfrustrated case when magnetic ordering is simply ignored.

(ii) It was neither stated nor implied that Professor Kotliar’s conclusions regarding
the Mott transition in the infinite-d Hubbard model are based solely on iterated
perturbation theory (IPT). They are not, although IPT does provide probably the
most self-contained description. What I did point out, and would reiterate, is that
complimentary studies by different groups—using quantum Monte Carlo (QMC),
exact diagonalization and other theoretical approaches—yield conflicting results; and
therefore that the scenario arising from IPT is not as yet convincingly corroborated. I
do, however, agree with him that, as far as QMC is concerned, it is probably feasible,
and certainly important, to sort the matter out.

(iii) I agree with Professor Kotliar entirely that an important challenge for the
future is, as it has been for nearly half a century, to understand the Mott transition in
finite-dimensional systems. But it remains my contention that, even in the simplifying
limit of infinite d, a qualitative understanding of the problem remains elusive.
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Ulmke, M., Janĩs, V. & Vollhardt, D. 1995 Phys. Rev. B 51, 10 411.

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/

